Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential
نویسندگان
چکیده
Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33
منابع مشابه
Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملExistence of solution for a singular elliptic equation with critical Sobolev-Hardy exponents
Via the variational methods, we prove the existence of a nontrivial solution to a singular semilinear elliptic equation with critical Sobolev-Hardy exponent under certain conditions .
متن کاملOn elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function
In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constan...
متن کاملOn Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents
This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...
متن کاملA Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents
In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents,
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 18 شماره
صفحات -
تاریخ انتشار 2005